Partial Solution Set, Leon §3.1

3.1.3 We are to show that the set C of complex numbers, with scalar multiplication defined
by a(a + bi) = ca + abi and addition defined by (a + bi) + (¢ + di) = (a + ¢) + (b + d)1,
satisfies the eight axioms of a vector space. This is only a partial solution.
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Let a + bi,c + di € C. Then

(a+bi)+ (c+di) = ((a+c)+ (b+d)i) (By definition of complex addition)
= ((c+a)+ (d+0b)i) (Real addition is commutative)
= (c+di)+ (a+bi) (By definition of complex addition)

Similar to Al; pick three complex numbers, use the definition of complex addition
as often as necessary, together with the known associativity of real addition, to show
that complex addition is associative.

The zero element is 0 = (0 + 07).

To show existence of the additive inverse, choose an arbitrary complex number (say,
x = a + bi) and construct its additive inverse. This will be made easy by your
knowledge of real additive inverses.

We must prove that scalar multiplication distributes over complex addition. Let
a+bi,c+di € C, and let &« € R. Then

al(a+bi) + (c+di)) = af(a+c)+ (b+d)i) (Def'n complex addition)
= a(a+c)+alb+d)i (Def’n of scalar mult. in C)
= (aa+ ac) + (ab+ ad)i (Distributivity in R)
= (aa+ abi) + (ac+ adi) (Defn of complex addition)
= a(a+bi) +alc+di) (Def'n of scalar mult. in C)

Similar to A5.
Use definition of scalar multiplication in C and associativity of real multiplication.

Use definition of scalar multiplication in C and the fact that 1 is the multiplicative
identity in R.

3.1.4 Use the solution to 3.1.3 as a template for your solution. The objects are different
(matrices rather than complex numbers) and the operations are necessarily defined dif-
ferently, but these differences have no effect on the structure - R™*" is simply another
vector space. The challenge is to avoid committing yourself to concrete values of m
and/or n.

3.1.6 You can use either my solution to 3.1.3 or your own solution to 3.1.4 as a guide. If you
found #4 easy, you might skip this one. If you found #4 difficult, then by all means do
this one if you have time.



3.1.7 Show that the element O in a vector space is unique.

Note: This is a standard uniqueness argument. We assume that we have two zero
elements and then discover that they are identical twins. The proof goes like this:

Proof: Let V be a vector space. We know that V' contains at least one zero element,
since V satisfies the axioms. We must show, then, that V contains at most one zero
element. So suppose that v and w are zeros in V. Then
v = v+w (Since w is a zero)
= w+ v (Since addition commutes)

= W (Since v is a zero)

Thus uniqueness is proven, and it now makes sense to reserve a special symbol (0) to
denote the zero element. O

3.1.11 Let V be the set of all ordered pairs of real numbers with addition defined in the usual
fashion by (z1, z2) + (v1,y2) = (21 + 1, X2 +y2), but with scalar multiplication defined by
ao (xy,x2) = (axy,2). Is V a vector space with these operations? Justify your answer.

Solution: No, this is not a vector space. Axiom 6 fails.

3.1.12 Let R denote the set of positive real numbers. Define the operation of scalar multi-
plication, denoted o, by avo z = z® for any real @ and z € R*. Define addition, denoted
@, by @y =x-y for all z,y € RT. (The dot represents the usual multiplication of
reals.) Is R a vector space when equipped with these operations? Prove your answer.

Solution: Yes, this is a vector space. To prove this, we must verify that the axioms
hold. Here is a partial proof:

A1: Use the definition of &, together with the commutativity of ordinary real multipli-
cation.

A2: Use the definition of @, together with the associativity of ordinary real multiplica-
tion.

A3: The zero element is the number 1, since for any v € R* we have s @1 =2-1=x.

A4: The additive inverse in this oddball space is the usual multiplicative inverse. That
is, for any z € R*, 1/ € R", and ¢ & 1/ = 2 - 1/x = 1. By the preceding
argument, 1 is the zero element.

A5: Let « € R and z,y € R*. Then
ao(rdy) = ao(r-y)
(
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AG6: Let o, 8,2 € R. Then

= %P
= ar® Pz
AT: Let o, € R, and z € R". Then
(@B)ox = o
= xﬁa

- ()
= ao(2”)

= wao(fox)

A8: Let x € R. Then 1-x = 2! = x, where the first equality is by our local definition
of scalar multiplication and the second is by the usual laws of exponents.
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